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Pair Production in a Uniform Electric Field
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We study the Klein–Gordon field coupled with an external uniform vector potential. We
compute pair production in a finite timet using the semiclassical approximation, and
show that, after the interaction of the Klein–Gordon field with the external potential,
whenh→ 0 the average number of produced pairs is zero. There is agreement with the
classical limit because the classical limit involves no production of pairs. We compared
our results with those of Schwinger. Finally we saw that the random variableN(t)=′′
net number of pairs produced at timet ′′ is in the semiclassical limit a stochastic Poisson
process.
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1. INTRODUCTION

The subject of this paper is the study of pair production at each finite time
t due to the presence of an external uniform vector potentiald

dt
Ef (t)∈ C∞0 (0,∞).

The adiabatic approach for large time was studied in many works (Berger, 1975;
Birrell and Davies, 1984; Eisenberg and K¨albermann, 1988; Fulling, 1985). For
this reason we are interested in the pair production at finite time.

The pair production in a finite time was studied in Parker (1969) using
the Heisenberg picture, in the context of the expanding universes. In this work
we follow an analogous formalism developed in Parker (1969), but we use the
Schrödinger picture (like (Berger, 1975)), because is more easy to calculate a
semiclassical solution of the second quantized Klein–Gordon field equation.

In the first section we develop the diagonalization method for the second quan-
tized Klein–Gordon field, defined at [−L , L]3 with periodic boundary conditions
(like (Berger, 1975; Greineret al., 1985)). First we will see that the Klein–Gordon
equation is equivalent to a Hamiltonian system, composed of an infinite num-
ber of harmonic oscillators with frequencies which depend on time. Once we
have seen this equivalence, we quantize these oscillators and obtain the time de-
pendent energy and the electric charge operators. From the energy operator, we
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obtain the quantum equation of the Klein–Gordon field, i.e., the second quantized
Klein–Gordon field equation. We also see that we can find all the eigenfunctions of
the energy and the electric charge operators. We observe that these eigenfunctions
clearly depend on time. Consequently, the vacuum state, the state of a particle,
the state of an antiparticle, etc. depend on time. This is a consequence of the elec-
tric field EE(t)= 1

c
d
dt
Ef (t), produced by the external potentialEf (t). Finally, with all

these eigenfunctions, we can construct the Fock space.
We then study the semiclassical dynamics of the vacuum state, using the

semiclassical solution, for the initial vacuum state, of the second quantized Klein–
Gordon field equation, and we calculate the probability that the vacuum state
remains unchanged in the semiclassical approximation, i.e., the semiclassical prob-
ability that pairs are not produced at finite timet .

If we denote this probability byPh(t), we show that

Ph(t) ∼ exp

(
− α

64

ε(t)

mc2

)
, (1)

whereα= e2

hc is the fine structure constant,ε(t)= (2L)3

8π | EE(t)|2 is the energy of the
external field at timet , and the symbol “∼” means approximately in the sense that,
a∼ b if lim h→0(a− b)= 0, for fixedα.

In Section 3 we show that, if we calculate the probability that pairs ara not
produced at timet , using Born’s approximation to the solution of the second
quantized Klein–Gordon field equation, we obtain the formula (1).

It is important to remark that for larger times, i.e., when the electric field is
zero, formula (1) becomes

Ph(t) = exp(O(h∞)),

this result is explained in more detail in the Appendix A. In general, we do not
have an explicit expression of the formula (1), for large times. For this reason, in
Section 4 we study the particular caseEf (t)= (0, 0,χ (t)), where

χ (t) =
0 if t < 0

cEt if 0 < t < T
cEt if t > T .

For this potential, whent > T , using the WKB approximation in the complex
plane, we obtain the following explicit expression of the formula (1)

exp

(
−T L3E2α

π3h

∞∑
n=1

(−1)n+1

n2
exp

(
−nπm2c4

hc|eE|
))

, (2)

i.e., we obtain the Schwinger’s formula (Greineret al., 1985; Holstein, 1999;
Itzykson and Znber, 1980; Nikishov, 1970; Popov, 1972; Schwinger, 1951).



P1: FHK

International Journal of Theoretical Physics [ijtp] PP856-ijtp-465836 June 10, 2003 15:52 Style file version May 30th, 2002

Pair Production in a Uniform Electric Field 533

Note that, we obtain Schwinger’s formula in the adiabatic approach, because
the method of imaginary times (Marinov and Popov, 1977; Popov, 1972), i.e.,
the WKB approximation in the complex plane, used in the computation of the
Schwinger’s formula is only justified in the adiabatic approach (see (Bonetet al.,
1998; Fedoryuk, 1993; Meyer, 1980; Wasow, 1973)).

In Section 5, we will see that the pair production is, in the semiclassical
approximation, a stochastic Poisson process, in agreement with the work (Schiff,
1968), where Schwinger tried to show that pair production in presence of an
external field is a Poisson process.

Finally, in the mathematical Appendix A, we give the semiclassical solution,
for the vacuum state, of the second quantized Klein–Gordon field equation. It is
important to remark that it is not possible to apply the WKB approximation in
this problem, however it is possible to apply a generalization of the WKB method,
called Maslov method (like (Haro, 1998; Maslov and Fedoriuk, 1981)), but we
belive that this method is excessively complex. For this reason, we use a more
easy method explained in detail in the Appendix A.

2. THE SECOND QUANTIZED KLEIN–GORDON FIELD COUPLED
WITH A UNIFORM EXTERNAL VECTOR POTENTIAL

In this section we diagonalize the Hamiltonian following an analogous treat-
ment used in Berger (1975).

The Lagrangian and the energy of the Klein–Gordon field at timet , in the
domain [−L , L]3, with periodic boundary conditions are (Greineret al., 1985),

L(t) =
∫

[−L ,L]3

(
h2|∂tψ |2− c2

∣∣∣∣(−i h E∇ + e

c
Ef (t)

)
ψ

∣∣∣∣2−m2c4|ψ |2
)

dEx

E(t) =
∫

[−L ,L]3

(
h2|∂tψ |2+ c2

∣∣∣∣(−i h E∇ + e

c
Ef (t)

)
ψ

∣∣∣∣2+m2c4|ψ |2
)

dEx.

The electric charge is

ρ(t) = i h
∫

[−L ,L]3

(
∂tψψ

∗ − ψ∂tψ
∗) dEx.

If we expandψ in Fourier’s series,ψ(Ex, t)= ∑Ek∈Z3 AEk(Ex), where we have

ψEk(Ex) = exp

(
iπ

L
Ek · Ex

)/
(2L)

3
2 ,

then

L(t) =
∑
Ek∈Z3

h2|ȦEk|2− ε2
Ek (t)|AEk|2,
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where

εEk(t) =
√

c2

∣∣∣∣πhEk
L
+ e

c
Ef (t)

∣∣∣∣2+m2c4.

Using the momentaBEk= h2ȦEk, we obtain

E(t) =
∑
Ek∈Z3

|BEk|2
h2 + ε2

Ek (t)|AEk|2; ρ(t) =
∑
Ek∈Z3

i

h

(
A∗Ek BEk − AEk B∗Ek

)
.

If we make the real canonical change

BEk =
h√
2

(PEk + i P̄Ek); AEk =
1

h
√

2
(QEk + i Q̄Ek),

and letωEk(t)= εEk(t)
h be the corresponding frequency, thenE(t) andρ(t) take the

form

E(t) = 1

2

∑
Ek∈Z3

(
P2
Ek + ω2

Ek(t)Q2
Ek
)+ (P̄2

Ek + ω2
Ek(t)Q̄2

Ek
)

ρ(t) = 1

h

∑
Ek∈Z3

(Q̄Ek PEk − QEk P̄Ek
)
.

This is the decomposition of the energy into oscillators. Notice that the Klein–
Gordon equation is equivalent to the Hamiltonian system{

Q̇Ek = PEk
ṖEk = −ω2

Ek(t)QEk

{
˙̄QEk = P̄Ek
˙̄PEk = −ω2

Ek(t)QEk
(3)

To obtain the quantum theory we now quantize these oscillators, i.e.,
PEk→−i h∂QEk , P̄Ek→−i h∂Q̄Ek , and the equation becomes

i h∂t8 = 1

2

∑
Ek∈Z3

[(−h2∂2
QEk
+ ω2

Ek(t)Q2
Ek
)+ (−h2∂2

QEk
+ ω2

Ek(t)Q̄2
Ek
)]
8−

∑
Ek∈Zn

εEk(t)8.

Now we look for the eigenfunctions of the energy and of the electric charge
operators. First, we have to introduce the creation and annihilation operators for
particles and antiparticles, at timet .

âEk(t) = 1

2
√
εEk(t)

[(
h∂QEk + ωEk(t)QEk

)+ i
(
h∂Q̄Ek + ωEk(t)Q̄Ek

)]
â+Ek (t) = 1

2
√
εEk(t)

[(−h∂QEk + ωEk(t)QEk
)− i

(−h∂Q̄Ek + ωEk(t)k̄
)]
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b̂−Ek(t) = 1

2
√
εEk(t)

[(
h∂QEk + ωEk(t)QEk

)− i
(
h∂Q̄Ek + ωEk(t)Q̄Ek

)]
b̂+−Ek(t) = 1

2
√
εEk(t)

[(−h∂QEk + ωEk(t)QEk
)+ i

(−h∂Q̄Ek + ωEk(t)k̄
)]
.

Then

Ê(t) =
∑
Ek∈Z3

εEk(t)
(
a+Ek (t)aEk(t)+ b+−Ek(t)−Ek(t)

)
ρ̂(t) =

∑
Ek∈Z3

(
a+Ek (t)aEk − b+−Ek(t)b−Ek(t)

)
.

Now, we construct the vacuum state at timet (Berger, 1975; Greineret al.,
1985; Haro, 1997).

If we consider

φ
0,0
Ek (QEk, Q̄Ek, t) =

√
ωEk(t)

πh
exp

(
−ωEk(t)

2h

(
Q2
Ek + Q̄2

Ek
))

,

then the vacuum state at timet , |0 〉 (t), is

|0〉(t) =
∏
Ek∈Z3

φ
0,0
Ek (QEk, Q̄Ek, t), (4)

since

Ê(t)|0〉(t) = 0 ρ̂(t)|0〉(t) = 0.

Starting from this state we can define another set of states (Berger, 1975;
Bjorken and Drell, 1965; Greineret al., 1985). In fact, we consider series

{nEk} :
Zn→ N
Ek→ nEk

and let

|{nEk}; {mEk}〉(t)
∏
Ek∈Z3

(
â+Ek (t)

)nEk√
nEk!

(
b̂+−Ek(t)

)mEk√
mEk!

|0〉(t).

Then|{nEk}; {mEk}〉(t), satisfies

Ê(t)|{nEk}; {mEk}〉(t) =
∑
El∈Z3

εEl (t)(nEl +mEl )|{nEk}; {mEk}〉(t)

ρ̂(t)|{nEk}; {mEk}〉(t) =
∑
El∈Z3

(nEl −mEl ){nEk}; {mEk}〉(t).

Therefore, at timet the state|{nEk}; {mEk}〉(t) containsnEk particles andmEk
antiparticles with energyεEk(t) for eachEk∈Z3.



P1: FHK

International Journal of Theoretical Physics [ijtp] PP856-ijtp-465836 June 10, 2003 15:52 Style file version May 30th, 2002

536 Haro

3. VACUUM TO VACUUM TRANSITIONS

Here we study the dynamics of the vacuum. LetT t
h |0〉(0) be the solution to

the problem {
i h∂t |9〉 = Ê(t)|9〉
|9〉(0)= |0〉(0).

(5)

ThenT t
h |0〉(0)=∏Ek∈Zn Tt

hφ
0,0
h (QEk, Q̄Ek, 0), whereTt

hφ
0,0
Ek (QEk, Q̄Ek, 0) is the

solution of the problemi h∂tφ =
[

1
2

(−h2∂2
QEk
+ ω2

Ek(t)Q2
Ek − h2∂2

Q̄Ek
+ ω2

Ek(t)Q̄2
Ek
)− εEk(t)

]
φ

φ(0)= φ0,0
Ek (QEk, Q̄Ek, 0).

(6)

Let Ph(t)= |(t)〈0|T t
h0〉(0)|2 represent the probability that pairs are not pro-

duced at timet .
Then, we have the following:

Theorem 3.1. If we suppose thatEf ∈ C∞0 (0,∞), then we have

Ph(t) ∼ exp

(
− α

64

ε(t)

mc2

)
.

We prove Theorem 3.1 in Appendix A. Here we deduce the result of the
theorem using Born’s approximation.

We introduce the free creation and annihilation operators

âEk =
1

2
√
εEk

[(
h∂QEk + ωEk QEk

)+ i
(
h∂Q̄Ek + ωEk Q̄Ek

)]
â+Ek =

1

2
√
εEk

[(−h∂QEk + ωEk QEk
)− i

(−h∂Q̄Ek + ωEk Q̄Ek
)]

b̂−Ek =
1

2
√
εEk

[(
h∂QEk + ωEk QEk

)− i
(
h∂Q̄Ek + ωEk Q̄Ek

)]
b̂+−Ek =

1

2
√
εEk

[(−h∂QEk + ωEk QEk
)+ i

(−h∂Q̄Ek + ωEk Q̄Ek
)]

,

where

ωEk≡
εEk
h
= 1

h

√
c2π2h2|Ek|2

L2
+m2c4.

We also introduce the operators ˆγEk= âEk+ b̂+−Ek, γ̂+Ek = â+Ek + b̂−Ek.
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Then, the quantum Hamiltonian operator is

Ĥ (t) = Ĥ0+
∑
Ek∈Z3

GEk(t)

2εEk
: γ̂+Ek γ̂Ek :, (7)

whereGEk(t)= ε2
Ek (t)− ε2

Ek , Ĥ0≡
∑
Ek∈Z3 Ĥ Ek,0=

∑
Ek∈Z3 εEk(â+Ek âEk+ b̂+−Ek), is the free

quantum Hamiltonian operator, and :: is the normal ordering operator.
Now, we study the problem{

i h∂tφ = Ĥ Ek(t)φ

φ(0)= φ0,0
Ek ,

(8)

with Ĥ Ek(t)= Ĥ Ek,0+ GEk(t)
2εh

: γ̂+Ek γ̂Ek : andφ0,0
Ek (QEk, Q̄Ek) =

√
ωEk
π h exp(− ωEk

2h (Q2
Ek + Q̄2

Ek)).

For a fixedt , using the perturbation theory, we obtain the following eigen-
functions for the operator̂H Ek(t):

φ̄
0,0
Ek (t) ∼ φ0,0

Ek −
GEk(t)

4ε2
Ek
φ

1,1
Ek

φ̄
1,1
Ek (t) ∼ φ1,1

Ek −
GEk(t)

4ε2
Ek

(
φ

2,2
Ek − φ

0,0
Ek
)

etc., whereφs,s
Ek =

(â+h )s(b̂+−Ek)

s! φ
0,0
Ek with s∈N.

In Born’s approximation, the solution to problem (8) is

T t
hφ

0,0
Ek ∼ φ

0,0
Ek −

i

h

∫ t

0

GEk(t)

2εEk
exp

(
−2i

h
(t − τ )εEk

)
dτφ1,1

Ek

∼ φ0,0
Ek −

GEk(t)

4ε2
Ek
φ

1,1
Ek −

i hĠEk(t)

8ε3
Ek

φ
1,1
Ek .

Then, the probability that a pair is created at timet is (see (Landau and Lifchitz,
1967, p. 172))∣∣∣∣ ∫

R2
φ̄

1,1
Ek (t)T t

hφ
0,0
Ek d QEk dQ̄Ek

∣∣∣∣2 ∼ h2|ĠEk(t)|2
64ε6
Ek
= h3

16ε6
Ek

[
αc5π2h2

L2
( EE(t) · Ek)2

+ 2c3e3π

L
( EE(t) · Ek)( EE(t) · Ef (t))+ hα2c4( EE(t) · Ef (t))2

]
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From this we can deduce that,

Ph(t) ∼
∏
Ek∈Z3

(
1− h3

16ε6
Ek

[
αc5π2h2

L2
( EE(t) · Ek)2

+ 2c3e3π

L
( EE(t) · Ek)( EE(t) · Ef (t))+ hα2c4( EE(t) · Ef (t))2

])
∼ exp

(
−
∑
Ek∈Z3

h3

16ε6
Ek

[
αc5π2h2

L2
( EE(t) · Ek)2+ hα2c4( EE(t) · Ef (t))2

])
,

Now, sinceh is small, using the Riemann’s integral definition, we have ap-
proximately

Ph(t) ∼ exp

(
− L3

π3

∫
R3

dEp
16(c2|Ep|2+m2c4)3

[αc5(| EE(t)|2|Ep|2

+ hα2c4( EE(t) · Ef (t))2]

)
= exp

(
− αε(t)

64mc2
− hα2cL3

16π (mc2)3
( EE(t) · Ef (t))2

)
∼ exp

(
− αε(t)

64mc2

)
.

4. SCHWINGER’S RESULT

Here we consider the external uniform vector potentialEf (t)= (0, 0,χ (t)),
where

χ (t) =
0 if t < 0

cEt if 0 < t < T
cET if t > T ,

and the spatial domain [−L , L]3.
Then,∀t > T , the probability that the vacuum state remains unchanged at

time t is given by the Schwinger’s formula

exp

(
−T L2E2α

π3h

∞∑
n=1

(−1)n+1

n2
exp

(
−nπm2c4

hc|eE|
))
.

Here we deduce this result using the relativistic tunneling effect (Eisenberg
and Kälbermann, 1988; Marinov and Popov, 1977; Popov, 1972), i.e., using the
WKB method in the complex plane.

If 0 < τ < T , the classical Hamiltonian is

H (τ ) = ±
√

c2 p2
⊥ + c2(p3+ eEτ )2+m2c4,

wherep⊥ = (p1, p2).
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The dynamic equations are

ẋ = c2 pi

H (τ )
; i = 1, 2

ẋ3 = c2(p3+ eEτ )

H (τ )

Ėp = E0.
For a particle with negative kinetic energy and momentumEp, we have

x3(τ ) = x3(0)+ 1

eE

(√
c2|Ep|2+m2c4−

√
c2 p2
⊥ + c2(p3+ eEτ )2+m2c4

)
.

We note that, if 0< −p3

eE < T , thenx3(−p3

eE ) is a classical turning point. There-
fore, at−p3

eE there is a probability that the particle has positive kinetic energy, and
then, ifτ > −p3

eE , its dynamics would be

x3(τ ) = x3(0)+ 1

eE

(√
c2|Ep|2+m2c3− 2

√
c2 p2
⊥ +m2c4

+
√

c2 p2
⊥ + c2(p3+ eEτ )2+m2c4

)
.

The average number of produced pairs at timet > T with momentum (p⊥, p3),
namelyω(p⊥, p3), is given in the adiabatic approach by the penetration factor

ω(p⊥, p3) ∼ exp

(
− 2

h

∫ τ+

τ−

√
c2 p2
⊥ +m2c4+ c2(p3+ eEτ )2 dτ

)
,

whereτ± = −p3±
√

p2
⊥ +m2c2

eE , andτ− < τ < τ+.
This penetration factor is obtained using the method of imaginary times

(Popov, 1972), (note that, in a mathematical language this method is called “Over-
Barrier Reflection” (Fedoryuk, 1993; Meyer, 1980)).

It is easy to verify that

ω(p⊥, p3) ∼ exp

(
−π

(
c2 p2
⊥ +m2c4

)
hc|eE|

)
.

Therefore, the probability that pairs with momentum (p⊥, p3) are not pro-
duced is (Holstein, 1999; Nikishov, 1970; Parker, 1969)(

1+ exp

(
−π

(
c2 p2
⊥ +m2c4

)
hc|eE|

))−1

.

In fact, let A be the probability that pairs with momentum (p⊥, p3) are not pro-
duced, and letB be the relative pair production probability of a pair with momentum
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(p⊥, p3); then the absolute probability thatn pairs with momentum (p⊥, p3) are
produced isABn (see (Nikishov, 1970, p. 350)). From the condition

A
∞∑

n=0

Bn = 1,

we obtainA= 1− B. Now, we use that the average number of produced pairs with
momentum (p⊥, p3) is

(1− B)
∞∑

n=0

nBn = exp

(
−π

(
c2 p2
⊥ +m2c4

)
hc|eE|

)
,

then, we deduce that

B =
exp

(
−π

(
c2 p2
⊥ +m2c4

)
hc|eE|

)
1+ exp

(
−π

(
c2 p2
⊥ +m2c4

)
hc|eE|

)
,

consequently

A =
(

1+ exp

(
−π

(
c2 p2
⊥ +m2c4

)
hc|eE|

))−1

.

Once we have calculated the probability that pairs with momentum (p⊥, p3)
are not produced, we deduce that the probability that the vacuum state remains
unchanged is∏(

1+ exp

(
−π

(
c2 p2
⊥ +m2x4

)
hc|eE|

))−1

= exp

(
−
∑

log

(
1+ exp

(
−π

(
c2 p2
⊥ +m2c4

)
hc|eE|

)))
.

The sum is over allp⊥ = π h
L (k1, k2) with (k1, k2)∈Z2 and overp3. But the

time required by the particle to arrive at the turning point is− p3

eE if 0 < −p3

eE < T .
Therefore, the particles that arrive at the turning point verify thatp3 is between
0 and eET. Therefore, sinceh is small, the sum is approximately an integral, and
using the logarithm Taylor’s series, we have

exp

(
−T L3|eE|

(πh)3

∞∑
n=1

(−1)n+1

n

∫
R2

exp

(
−nπ

(
2p2
⊥ +m2c4

)
hc|eE|

)
dp⊥

)

= exp

(
−T L3E3α

π2h

∞∑
n=1

(−1)n+1

n2
exp

(
−nπm2c4

hc|eE|
))
.
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Consequently, the Schwinger’s formula gives the probability that the vacuum
state remains unchanged for large times, i.e., for times such that the electric field
is zero (χ (t)= cET). If we compute the probability that the vacuum state remains
unchanged for 0< t < T we obtain the formula (1).

Remark 1. The probability that pairs with spin12 are not produced, using the
Exclusion Principle, is

1− exp

(
−π

(
c2 p2
⊥ +m2c4

)
hc|eE|

)
.

Then, the probability that the vacuum remains unchanged is(∏
1− exp

(
−π

(
c2 p2
⊥ +m2c4

)
hc|eE|

))2

,

since there are two different states for particles with spin1
2. Therefore, the final

result is

exp

(
−2T L3E2α

π3h

∞∑
n=1

1

n2
exp

(
−nπm2c4

hc|eE|
))
.

Remark 2. The original method to derive the Schwinger’s formula is founded in
the definition of a relativistic invariant vacuum action, namelyW (Greineret al.,
1995; Itzykson and Zuber, 1980; Schwinger, 1951). This action has an imaginary
part, then

exp

(
− 2

h
ImW

)
,

“represents” the probability that the vacuum state remains unchanged.
There is a great analogy between the original method and the relativistic

tunneling effect, because the penetration factor is

exp

(
− 2

h
ImS

)
,

where S is the classical action computed along a simple closed curve, in the

complex plane, containing the complex turning points
−p3± i

√
p2
⊥ +m2c2

eE as interior
points (Fedoryuk, 1993; Popov, 1972).

Remark 3. In the adiabatic approach, the pair production probability for large
times involves always a factor that is exponentially small inh, because in the
adiabatic approach, the penetration factor (in our context the average number of
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produced pairs) is exponentially small inh (Bonetet al., 1998; Fedoryuk, 1993;
Meyer, 1980; Wasow, 1973).

5. THE STOCHASTIC PROCESS OF PAIR PRODUCTION

Here we consider the random variablesN(t) =′′ net number of produced pairs
at timet ′′, with

P(N(0)= n) =
{

1 if n = 0
0 if n 6= 0,

therefore

P(N(t) = n) =
∑
Ek1,...,Ekn

1

n!

∣∣(t)〈1+Ek1
1−−Ek1

. . .1+Ekn
1−−Ekn

∣∣T t
h

∣∣0〉(0)
∣∣2,

wherethe state|1+Ek1
1− . . .1+Ekn

1−Ekn
〉(t) contains n particles whose momenta are

Ek1, . . . , Ekn andn antiparticles whose momenta are−Ek1, . . . ,−Ekn.
Using the results obtained in Appendix A, it is easy to prove that if

Ef (t)∈ C∞0 (0,∞), then

P(N(t) = n) ∼ 1

n!

(
α

64mc2
ε(t)

)n

exp

(
− α

64mc2
ε(t)

)
. (9)

Consequently, in the semiclassical approximationN(t) is a stochastic Poisson
process with an expected valueα64mc2 ε(t) (see (Schwinger, 1970)).

It is interesting to note that the process of the photon emission by a classical
charged body, follows an exact stochastic Poisson process (see (Itzykson and Zuber,
1980; Schwinger, 1970).

APPENDIX A

The crucial part of the proof of Theorem 3.1 is the following lemma

Lemma 1. The solution of the problem (8) is

Tt
hφ

0,0
Ek (0)= AEk(t)φ0,0

Ek (t)+ γEk(t),

where

|AEk(t)|2 = 1− h2
ε2
Ek (t)

16ε4
Ek (t)
+ h4JEk(t),

with |JEk(t)| ≤ K/ε4
Ek .
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AndγEk(t) satisfies∫
R2

|γEk(t)|2 d QEk dQ̄Ek ≤ K
/
ε4
Ek and γEk(t)⊥φ0,0

Ek (t),

where K is a constant that is independent ofEk,h, and t, andεEk=
√

c2|π hEk
L |2+m2c4.

Proof of Lemma 1: First we will construct a semiclassical solution to problem
(8). To find a semiclassical solution, we have to consider the functionsφ

s,s
Ek (t)=

(â+Ek (t))s(b̂+−Ek(t))s

s! φ
0,0
Ek (t) with s∈N.

We can write problem (8) in the form{
i h∂tφ = Ĥ Ek(t)φ

φ(0)= φ0,0
Ek (0),

(10)

whereĤ Ek(t)= εEk(t)(â+Ek (t)âEk(t)+ b̂+−Ek(t)b̂−Ek(t)). If we expand the solution in power

series ofh thus,Tt
hφ

0,0
Ek (0)= ∑ j ,s∈N hs+ j Aj

s,Ek(t). Then, using the crucial result

φ̇
s,s
Ek (t) = ε̇Ek(t)

2εEk(t)

(
sφs−1,s−1
Ek (t)− (s+ 1)φs+1,s+1

Ek (t)
)
,

we obtain, after having equalized the powers ofh, the system:
If s= 0

Ȧ0
0,Ek = 0; Ȧ j

0,Ek +
ε̇Ek(t)

2εEk(t)
Aj−1

1,Ek = 0, for j > 0.

If s > 0

−i
ε̇Ek(t)

2εEk(t)
A0

s−1,Ek − 2εEk(t)A0
s,Ek = 0.

i Ȧs,Ek − i
ε̇Ek(t)

2εEk(t)
s A1

s−1Ek − 2sεEk(t)A1
s,Ek = 0.

i Ȧ j−1

s,Ek + i
ε̇Ek(t)

2εEk(t)

(
(s+ 1)Aj−2

s+1,Ek − s Aj

s−1,Ek
)− 2sεEk(t)Aj

s,Ek = 0, for j > 1.

We can obtain the solution to this system by recurrence. In fact,

A0
0,Ek(t) ≡ 1; A0

1,Ek(t) = −i
ε̇Ek(t)

4ε2
Ek (t)

; A1
0,Ek(t) =

∫ t

0
i
ε̇2
Ek (τ )

8ε2
Ek (τ )

dτ.

A1
1,Ek(t) = 1

2εEk(t)

(
i Ȧ0

1,Ek − i
ε̇Ek(t)

2εEk(t)
A1

0,Ek

)
; A0

2,Ek(t) = −i
ε̇Ek(t)

4ε2
Ek (t)

A0
1,Ek(t).

A2
0,Ek(t) = −

∫ t

0

ε̇Ek(τ )

2εEk(τ )
A1

1,Ek(τ ) dτ
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A2
1,Ek(t) = 1

2εEk(t)

(
i Ȧ1

1,Ek + i
ε̇Ek(t)

2εEk(t)

(
2A0

2,Ek − A2
0,Ek
))

A0
3,Ek(t) = −i

ε̇Ek(t)

4ε2
Ek (t)A0

2,Ek(t)
; A3

0,Ek(t) = −
∫ t

0

ε̇Ek(τ )

2εEk(τ )
A2

1,Ek(τ ) dτ

A1
2,Ek(t) = 1

4εEk(t)

(
i Ȧ0

2,Ek − i
ε̇Ek(t)

εEk(t)
A1

1,Ek

)
; etc. ¤

With these solutions, and the relationε2
Ek ≤Cε2

Ek (t), whereC= 2(1+ e2‖ Ef ‖2∞
m2c4 ),

we obtain

Lemma 2. If s, j ≤ 4 we have:

∣∣Aj

s,Ek(t)
∣∣ ≤ C̄

ε
2s+ j
Ek

for s > 0;
∣∣Aj

0,Ek(t)
∣∣ ≤ C̄

ε
2+ j
Ek

for j > 0

∣∣Ȧ j

s,Ek(t)
∣∣ ≤ g(t)

ε
2s+ j
Ek

for s > 0;
∣∣Ȧ j

0,Ek(t)
∣∣ ≤ g(t)

ε
2+ j
Ek

for j > 0,

whereC̄ is a constant that is independent ofEk, and g(t)∈ C∞0 (0,∞) is a function
that is independent ofEk. Now, we show that the function

φ̄Ek(t) =
∑
s, j=0
s+ j=4

hs+ j Aj

s,Ek(t)φs,s
Ek (t),

is a semiclassical solution. In fact, using (Harthong, 1984; Maslov and Fedoriuk,
1981),

√∫
R2

∣∣Tt
hφ

0,0
Ek (0)− φ̄Ek(t)

∣∣2 d QEk dQ̄Ek ≤
1

h

∫ t

0

√
|(i h∂τ − Ĥ Ek(τ ))φ̄Ek(τ )|2 d QEk dτ ,

and Lemma 2, we obtain√∫
R2

∣∣Tt
hφ

0,0
Ek (0)− φ̄Ek(t)

∣∣2 d QEk dQ̄Ek ≤
h4G(t)

ε4
Ek

,

whereG(t)∈L∞(0,∞) ∩ C∞(0,∞) is independent ofEk andh.
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Therefore,φ̄Ek(t) is a semiclassical solution (Hagedorn, 1980; Haro, 1998;
Maslov and Fedoriuk, 1981), and we see thatTt

hφ
0,0
Ek (0) has the form

Tt
hφ

0,0
Ek (0)= φ̄Ek(t)+ h4

4∑
s=0

FEk,s(t)φ
s,s
Ek (t)+ h4βEk(t),

with |FEk,s(t)| ≤ K̄/ε4
Ek ,
√∫

R2 |βEk(t)|2d QEkdQ̄Ek ≤ K̄/ε4
Ek , whereK̄ is a constant that

is independent ofEk andh, andβEk(t)⊥φ0,0
Ek (t), . . . , φ4,4

Ek (t).
Now, we take

AEk(t) =
4∑

j=0

h j Aj

0,Ek(t)+ h4FEk,o(t)

γEk(t) = Tt
hφ

0,0
Ek (0)− AEk(t)φ0,0

Ek (t).

Finally, since

A2
0,Ek(t) = −

∫ t

0

ε̇Ek(τ )

4ε2
Ek (τ )

(
i Ȧ0

1,Ek − i
ε̇Ek(τ )

2εEk(τ )
A1

0,Ek

)
dτ

= −
ε̇2
Ek (t)

32ε4
Ek (t)
− 1

2

(∫ t

0

ε̇2
Ek (τ )

8ε3
Ek (τ )

dτ

)2

,

andA3
0,Ek(t) is imaginary, we have

|AEk(t)|2 = 1− h2
ε̇2
Ek (t)

16ε4
Ek (t)
+ h4JEk(t). ¤

Proof of Theorem 3.1: Starting from the relation|AEk(t)|2= 1− h2 ε̇2
Ek (t)

16ε4
Ek (t)
+

h4JEk(t), we have

Ph(t) =
∏
Ek∈Z3

|AEk(t)|2 =
∏
Ek∈Z3

(
1− h2

ε̇2
Ek (t)

16ε4
Ek (t)
+ h4JEk(t)

)
,

= exp

(∑
Ek∈Z3

log

(
1− h2

ε̇2
Ek (t)

16ε2
Ek (t)

)
+ O(h)

)

= exp

(
−
∑
Ek∈Z3

h2
ε̇2
Ek (t)

16ε4
Ek (t)
+ O(h)

)
,

whereO(h) verifies limh→0O(h) = 0, for fixedα.
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If we use the Riemann’s integral definition

∑
Ek∈Z3

h2ε̇2
Ek (t)

16ε4
Ek (t)
= L2αc5

16π3

∫
R3

( EE(t) · Ep)2

(c2|Ep|2+m2c4)3
dEp+ O(h),

then we obtain

Ph(t) = exp

(
− L3αc5

16π3

∫
R3

( EE(t) · Ep)2

(c2|Ep|2+m2c4)3
dEp+ O(h)

)
.

Now it is easy to prove that

ph(t) = exp

(
− α

64

ε(t)

mc2
+ O(h)

)
∼ exp

(
− α

64

ε(t)

mc2

)
. ¤
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