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Pair Production in a Uniform Electric Field
Jaume Haro!

Received November 11, 2002

We study the Klein—Gordon field coupled with an external uniform vector potential. We
compute pair production in a finite tinteusing the semiclassical approximation, and
show that, after the interaction of the Klein—Gordon field with the external potential,
whenh — 0 the average number of produced pairs is zero. There is agreement with the
classical limit because the classical limit involves no production of pairs. We compared
our results with those of Schwinger. Finally we saw that the random varbégi)e="

net number of pairs produced at tirtieis in the semiclassical limit a stochastic Poisson
process.
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1. INTRODUCTION

The subject of this paper is the study of pair production at each finite time
t due to the presence of an external uniform vector poteﬁlitifa(t) € C§(0, 00).

The adiabatic approach for large time was studied in many works (Berger, 1975;
Birrell and Davies, 1984; Eisenberg an@lkérmann, 1988; Fulling, 1985). For
this reason we are interested in the pair production at finite time.

The pair production in a finite time was studied in Parker (1969) using
the Heisenberg picture, in the context of the expanding universes. In this work
we follow an analogous formalism developed in Parker (1969), but we use the
Schidinger picture (like (Berger, 1975)), because is more easy to calculate a
semiclassical solution of the second quantized Klein—Gordon field equation.

Inthe first section we develop the diagonalization method for the second quan-
tized Klein—-Gordon field, defined at]L, L] with periodic boundary conditions
(like (Berger, 1975; Greineat al., 1985)). First we will see that the Klein—Gordon
equation is equivalent to a Hamiltonian system, composed of an infinite hum-
ber of harmonic oscillators with frequencies which depend on time. Once we
have seen this equivalence, we quantize these oscillators and obtain the time de-
pendent energy and the electric charge operators. From the energy operator, we

1 Department de Mateatica Aplicada |, ETSEIB, Universitat Padithica de Catalunya, Diagonal 647,
08028 Barcelona, Spain. e-mail: jaime.haro@upc.es.

531

0020-7748/03/0300-0531/ 2003 Plenum Publishing Corporation



532 Haro

obtain the quantum equation of the Klein—Gordon field, i.e., the second quantized
Klein—Gordon field equation. We also see that we can find all the eigenfunctions of
the energy and the electric charge operators. We observe that these eigenfunctions
clearly depend on time. Consequently, the vacuum state, the state of a particle,
the state of an antiparticle, etc. depend on time. This is a consequence of the elec-
tric field E(t) = £ & f(t), produced by the external potentig(t). Finally, with all

these eigenfunctions, we can construct the Fock space.

We then study the semiclassical dynamics of the vacuum state, using the
semiclassical solution, for the initial vacuum state, of the second quantized Klein—
Gordon field equation, and we calculate the probability that the vacuum state
remains unchanged in the semiclassical approximation, i.e., the semiclassical prob-
ability that pairs are not produced at finite titne

If we denote this probability by (t), we show that

Ph(t) ~ exp(—%ffn(—:;), 1)

wherea = % is the fine structure constant}t) = % | IAE(t)|2 is the energy of the
external field at timé, and the symbol~” means approximately in the sense that,
a~biflim p_o(@—b)=0, for fixedw.

In Section 3 we show that, if we calculate the probability that pairs ara not
produced at time, using Born's approximation to the solution of the second
guantized Klein—Gordon field equation, we obtain the formula (1).

It is important to remark that for larger times, i.e., when the electric field is
zero, formula (1) becomes

Pn(t) = exp(O(h™)),

this result is explained in more detail in the Appendix A. In general, we do not
have an explicit expression of the formula (1), for large times. For this reason, in
Section 4 we study the particular cas@) = (0, 0, x (t)), where

0 if t<O
xt)=4qcEt if 0<t<T
cEt if t>T.

For this potential, wheh> T, using the WKB approximation in the complex
plane, we obtain the following explicit expression of the formula (1)

exp(_ T L3E2 i (-1t exp(_ nnmzc“))’ @)

w3h 4= n? hcleE]

i.e., we obtain the Schwinger’s formula (Greirgral., 1985; Holstein, 1999;
Itzykson and Znber, 1980; Nikishov, 1970; Popov, 1972; Schwinger, 1951).
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Note that, we obtain Schwinger’s formula in the adiabatic approach, because
the method of imaginary times (Marinov and Popov, 1977; Popov, 1972), i.e.,
the WKB approximation in the complex plane, used in the computation of the
Schwinger's formula is only justified in the adiabatic approach (see (Bxiredt
1998; Fedoryuk, 1993; Meyer, 1980; Wasow, 1973)).

In Section 5, we will see that the pair production is, in the semiclassical
approximation, a stochastic Poisson process, in agreement with the work (Schiff,
1968), where Schwinger tried to show that pair production in presence of an
external field is a Poisson process.

Finally, in the mathematical Appendix A, we give the semiclassical solution,
for the vacuum state, of the second quantized Klein—Gordon field equation. It is
important to remark that it is not possible to apply the WKB approximation in
this problem, however it is possible to apply a generalization of the WKB method,
called Maslov method (like (Haro, 1998; Maslov and Fedoriuk, 1981)), but we
belive that this method is excessively complex. For this reason, we use a more
easy method explained in detail in the Appendix A.

2. THE SECOND QUANTIZED KLEIN-GORDON FIELD COUPLED
WITH A UNIFORM EXTERNAL VECTOR POTENTIAL

In this section we diagonalize the Hamiltonian following an analogous treat-
ment used in Berger (1975).

The Lagrangian and the energy of the Klein—Gordon field at tijme the
domain [-L, L]3, with periodic boundary conditions are (Greirgtral., 1985),

L(t) =/ <h2|at1//|2—c2 —m2C4|1/f|2> dx
[-L,LJ3

E(t) =f <h2|atw|2+c2
[-L,L]®

The electric charge is

2

L= e
(—th—i—(—:f(t))w

2
(—i hv + gf(t)>¢ + mzc4|1p|2> dx.

pO=in [ (v —yay)dx

[(-L.L]

If we expandy in Fourier’s seriesy (X, t) = Y ;s Ax(X), where we have
V(%) = exp('f”R : x) / (2L)%,

L(t) =) h?IA” — ZIAL,

kez®

then
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(1) = \/Cz

Using the moment&; = h?A, we obtain

where

hk 2
= + m2c4.

L

e-
—f(t
+-f

_ |2 i
E(t) = Z 'ikzl +eEMIAL o) = Z IE(AEBR — ABY).
kez? kez?
If we make the real canonical change
h 1
V2 hy/2
&)

and letwy(t) = %~ be the corresponding frequency, the(t) and p(t) take the
form

Bi=—=(P+iP) A= —=(Qu+iQy),

1 — —
EM) =5 > (PP + w2()QE) + (P? + wE()Q7)
kez?

p(t) = %Z(Q_RPR — QP)-

This is the decomposition of the energy into oscillators. Notice that the Klein—
Gordon equation is equivalent to the Hamiltonian system

%= F =
{PR = —wZ(t) Qg {PR =~ Qg Y

=1

To obtain_the quantum theory we now quantize these oscillators, i.e.,
Px — —ihdg,, Py — —ihdg,, and the equation becomes

. 1 _
ihoy® = 2 > [(—h?03, + wf()QE) + (—h?03, + wE(QZ)] P — > ().
kez? kezn
Now we look for the eigenfunctions of the energy and of the electric charge

operators. First, we have to introduce the creation and annihilation operators for
particles and antiparticles, at tinhe

" 1 ) _
&0 =570 [(hdg; + @) Qg) +1 (hdg, + w) Q)]
AH(1) = ——[(~hog, + e (1)Qy) — i (~hdg, + (K]

2,/€(t)
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~ 1 . —
b_g(t) = W[(ha% + (1) Q) — i (hdg, + wp(t)Qr)]
R 1 ) _
b (t) = 2\/ERW[(—haQE + wp(t)Qg) +i(—hdg, + (k)]
Then
EM) = ) «®)(al (D (t) + b' (t) ()
kez3
P = ) (& (ag — b (Db g(1).
kez?

Now, we construct the vacuum state at tim@erger, 1975; Greinegt al.,
1985; Haro, 1997).
If we consider

mh
then the vacuum state at tihg0) (t), is
00 = [ [ o2 %Qx Qi 1), 4)
kez?
since

EQIO@E) =0  A1)0)(t) =0.

Starting from this state we can define another set of states (Berger, 1975;
Bjorken and Drell, 1965; Greinat al., 1985). In fact, we consider series

LIRS
and let
at ()™ (b7 )™
|{nR};{mR}>(t)n(ak()) b50) 10)(t).

kez? \/n_RI W
Then|{ng}; {mg})(t), satisfies

E@HNgh Imph(©) = Y ey + mp)ling; {imgh) (t)

Tez?
POHNY M (®) = D (0 — mp){ngh; (Mg (1)
Tez3
Therefore, at timed the state|{ng}; {m;})(t) containsn; particles andmy
antiparticles with energy; (t) for eachk e Z3.
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3. VACUUM TO VACUUM TRANSITIONS

Here we study the dynamics of the vacuum. Zgt0)(0) be the solution to
the problem

ihoy| W) = E(t)|¥) )
|)(0) = 10)(0).
Then7{10)(0) = [T 20 Thon Q. Qg 0), whereTp>%(Qg, Qg, 0) is the
solution of the problem
{i horg = [%(—hzaéR +w2(t)QE — h*93 +wZ()QF) - ER(I)]cb
$(0) = ¢ Q¢ Q. 0).

Let Ph(t) =|(t)(0|70)(0)| represent the probability that pairs are not pro-
duced at time.
Then, we have the following:

(6)

Theorem 3.1. If we suppose thaf e C§°(0, 00), then we have

Pr(t) ~ exp(—%fn(—g).

We prove Theorem 3.1 in Appendix A. Here we deduce the result of the
theorem using Born’s approximation.
We introduce the free creation and annihilation operators

8 = zf[(haqk + o Qp) +i(hdg, + 0 Qp)]
al = Tﬁ[(_haQR + wgQg) — i (—hdg, + Q)]
b= 25_[(h8Qk + o Qp) — i (hdg, + 9x Q)]
bt = 2—\ﬁ[(—han + oxQp) +i(~hdg, +wQp)].

where

+ —
We also introduce the operatgrs= &; + b MY R = ak

o->
|
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Then, the quantum Hamiltonian operator is

H(t) = Ho + Z k(t) PP (7)

kez?

whereGg(t) = €2(t) — 2, Ho= Yz Hio= Yier ek(aé & +b")), is the free
quantum Ham||(ton|an operator, and :: is the normal ordering operator
Now, we study the problem

{i hawp = Hi(t)g ®

$(0) = ¢,

with Hg(t) = Fig o+ S99 9 - andp®9(Qr, Q) = /% exp(— 25 (Q2 + Q).
For a fixedt, using the perturbatlon theory, we obtain the following eigen-
functions for the operatadr ;(t):

t
o) ~ 47"~ k( )¢>1 '
e(t
l 1(t) l 1 4k€(g) (¢R22 _ ¢§O)
k
etc., Wherep (a+) (b+ ¢« % with se N.

In Born S apprOX|mat|on the solution to problem (8) is

oy .
00 _ 00 | Gi(t) 2 ) 11
Tng, ~ & — h o e exp| _F(t — 1) | drgy
00 k(t) 11 i hG(t) 11
~ % ¢ 8e3 %
k

Then, the probability that a pair is created at titrie (see (Landau and Lifchitz,
1967, p. 172))

(E(t) - K)°

2 2\ 2 3 5 _2R2

— - h?|Gg(t)] h® [acz<h
LItyTt62°d 0- dO=-| ~ k =

‘/mzd’i (O7n"d QdQx 642 16| L2

2c3e3
+

(B RE®D - T()) + ha?cHEQD - f(t))}
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From this we can deduce that,

Pa(t) ~ ] (1 n [M(Em-&f

reg 16| L2

3
+ 2 ) REW - T0)+ ha®c(EQ) - T (t))z])
~ exp(— > %; [%jhz(éa) K2+ heH(E(D) - f(t))ZD,
ReZ3 R

Now, sinceh is small, using the Riemann’s integral definition, we have ap-
proximately

[ac>(IE(t)12IPI?

L3 dp
Ph(t) ~ eXp<_F AS 16(CZ|—F>)|2+ m204)3

ase(t) ha?cL®
64mE 167 (m)3

+ ha?cH(E() - F(t))Z]) - exp(— (E(t) - f(t))z)
on{-222)

4. SCHWINGER’S RESULT

Here we consider the external uniform vector potenfigt) = (0, 0, x (t)),
where
0 if t<O0
x(t)=4{cEt if 0<t<T
CET if t>T,
and the spatial domainL, L]°.

Then,vt > T, the probability that the vacuum state remains unchanged at
timet is given by the Schwinger’s formula

2E2,, % ayn+l 24
exp(—TLEaZ( 1) exp( nnmc))‘

m3h &~ n2 " hcleE|

Here we deduce this result using the relativistic tunneling effect (Eisenberg
and Kéalbermann, 1988; Marinov and Popov, 1977; Popov, 1972), i.e., using the
WKB method in the complex plane.

If0< t< T, the classical Hamiltonian is

H(r) = +,/c?p? + C¥(ps + eEx)? + mect,
wherep, = (p1, p2)-
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The dynamic equations are

Czpi_ -
X_—H(‘L')' i=1,2
_ c*(ps+eEx)
T H@
p = 0.

For a particle with negative kinetic energy and momenfyrnwe have

1 A 2
x3(1) = X3(0) + JE(‘/C2| p|2 + mic* — \/cz pT + c?(ps + eEr)? + m2c4>.

We note that, if & ;—”3 <T, thenxg(;—’;) is a classical turning point. There-
fore, at‘e—‘l’z3 thereis a proEabiIity that the particle has positive kinetic energy, and
then, if > 22, its dynamics would be

1
X3(7) = X3(0) + aE<\/02|E)|2 + m2cd — 2,/c?p? + m2c*

Jr\/c2 p? + c?(ps + eEr)? + m2c4).

The average number of produced pairs attim& with momentump,, ps),
namelyo(py, ps), is given in the adiabatic approach by the penetration factor

T+
o(pL, p3) ~ exp<—%/ \/CZpi + m2C4+C2(p3+9E1:)2d‘E>,

—pst+ 2+ m2c2
wherery, = “BEV BRI andr_< t< 7,4

This penetraeiion factor is obtained using the method of imaginary times
(Popov, 1972), (note that, in a mathematical language this method is called “Over-
Barrier Reflection” (Fedoryuk, 1993; Meyer, 1980)).

It is easy to verify that

7 (c?p? + mPc?)
hcleE] ’

w(pL, P3) ~ eXp(—

Therefore, the probability that pairs with momentup ( ps) are not pro-
duced is (Holstein, 1999; Nikishov, 1970; Parker, 1969)

-1
7(c?p? + m¥c?)
1 SRR wih S .
< + exp( hcleE|

In fact, let A be the probability that pairs with momenturm,(, ps) are not pro-
duced, and |eB be the relative pair production probability of a pair with momentum
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(pL, p3); then the absolute probability thatpairs with momentum, , ps) are
produced isAB" (see (Nikishov, 1970, p. 350)). From the condition

o0
AZ B" =1,
n=0

we obtainA =1 — B. Now, we use that the average number of produced pairs with
momentum p,, ps) is

S o _n(czpi+mzc4)
1 B)nZ:OnB _exp< ~hoeE )

then, we deduce that
exp _ m(c?pl + mPcf)
hcleE|
7 (c?pd + mPc?)
he|eE]| ’

B =
1+ exp(—

consequently
7(c2p? +m2c)\\ *
A=1(1 - .
( +eXp( heleE] ))

Once we have calculated the probability that pairs with momentum [§s)
are not produced, we deduce that the probability that the vacuum state remains
unchanged is

[ (1 + EXp<_w>>_l
= exp(- Z Iog<1 + eXp<_%>>>.

The sum is over alp, = ”—Lﬁ(kl, ko) with (ki, ko) € Z? and overps. But the
time required by the particle to arrive at the turning pointig& if 0< 2 < T.
Therefore, the particles that arrive at the turning point verify fiwats between
0 and eET. Therefore, sindeis small, the sum is approximately an integral, and
using the logarithm Taylor’s series, we have

TL3|eE| & (—1)? nr(2p? + mac*
exp( s 2 /exp(——( Pl ))dpl)
RZ

(rhp® & hcleE|

33, %0 qyn+l 2 4
=exp(—TLEaZ( 1) exp( nnmc>>.

m2h & n2 "~ hcleE]
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Consequently, the Schwinger’s formula gives the probability that the vacuum
state remains unchanged for large times, i.e., for times such that the electric field
is zero (¢ (t) = cET). If we compute the probability that the vacuum state remains
unchanged for & t < T we obtain the formula (1).

Remark 1. The probability that pairs with spié are not produced, using the

Exclusion Principle, is
CZ 2 m2c4
1-— exp _n(pl——i_) .
hcleE|

Then, the probability that the vacuum remains unchanged is

(1_[1— em(_%>)2’

since there are two different states for particles with éaiﬁ'herefore, the final

result is
y 2T L3E%y i 1 ox nz m2c?
P mdh 4= n2 a hcleg /)’

Remark 2. The original method to derive the Schwinger’s formula is founded in
the definition of a relativistic invariant vacuum action, nam@ély(Greineret al.,
1995; Itzykson and Zuber, 1980; Schwinger, 1951). This action has an imaginary

h '

“represents” the probability that the vacuum state remains unchanged.
There is a great analogy between the original method and the relativistic
tunneling effect, because the penetration factor is

2
exp(—#mS),

where S is the classical action computed along a simple closed curve, in the

complex plane, containing the complex turning poiﬁﬁéﬂi Vel';i“"zcz as interior
points (Fedoryuk, 1993; Popov, 1972).

Remark 3. In the adiabatic approach, the pair production probability for large
times involves always a factor that is exponentially smalhjrbecause in the
adiabatic approach, the penetration factor (in our context the average number of
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produced pairs) is exponentially smallfn(Bonetet al,, 1998; Fedoryuk, 1993;
Meyer, 1980; Wasow, 1973).

5. THE STOCHASTIC PROCESS OF PAIR PRODUCTION

Here we consider the random variablg) =" net number of produced pairs
at timet”, with

1 if n=0
PN(©)=n) = {o if n-0,
therefore
PIND =) = 3 ot o0

Ke, ... Kn

wherethe statell*l‘ 1k+n1- )(t) containsn partlcles whose momenta are
k kn andn antlpartlcles whose momenta aFdxl, e —kn.

_ Usmg the results obtained in Appendix A, it is easy to prove that if
f(t) € C5°(0, 00), then

PO =)~ 5 (gmze0) (- gaze®): @

Consequently, in the semiclassical approximatifh) is a stochastic Poisson
process with an expected valggt ¢(t) (see (Schwinger, 1970)).

It is interesting to note that the process of the photon emission by a classical
charged body, follows an exact stochastic Poisson process (see (Itzykson and Zuber,
1980; Schwinger, 1970).

APPENDIX A

The crucial part of the proof of Theorem 3.1 is the following lemma
Lemma 1. The solution of the problem (8) is
Thoe(0) = Ay ()d (1) + 1&(t),

where

) M,
IAOF = 1= Rt RO

with | J;(0)] < K /2.
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And y;(t) satisfies

/R|y|;(t)|2dQRd(§R§K/eg and  y(t) Lo (1),

where K is aconstantthatisindependeritdf, andt, andg = /2| =K |2 4 m2ct,

Proof of Lemma 1: First we will construct a semiclassical solution to problem
(8). To find a semiclassical solution, we have to consider the funcl;iéﬁ(s) =
5+ b+
(CHU)N ( () ¢9 0(t) with se N.
We can erte problem (8) in the form

ihap = Hy(t)p
0
$(0) = 42°0), (10)

whereH (t) = @ (&) + BfR(t)f)fR(t)). If we expand the solution in power
series ofh thus, Ti¢2%(0)= 3"} oy h®") Ai ;(t). Then, using the crucial result
. e (t

¢§,S(t) 26k((t)) (S¢S 1,5— l(t) _ (S + 1)¢S+l S+l(t))

we obtain, after having equalized the power$pthe system:
If s=0

A0 A i 6k('[)
Mo=0 A

26(0 1k =0, for j>0.
Ifs>0
&) o 0
i O A i~ 26A =0.
iAgg—i k()sAl — 2se; ()AL = 0.
K 2¢: ( ) k s,k
+| ()

o (t)((s+ )AJ+1k—SAi_1’R)—ZSeR(t)Aikzo, for j> 1

We can obtain the solution to this system by recurrence. In fact,

- ¢ )
R0 =1 Agyﬁ(t):_i::g(g); 0= [ 2: o

1y L (a0 -Gk(t) - ()
A0 = o (e 5 M) A0 =-igER A0

AL(t) = — /0 ;k((’)) AL (r)de
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2 _ 1 7 - () 0 _ a2
Alﬁ(t)_m<|AiR+ 26I((t)(zA A ))

o &0 e W
SO = Tzoam " [, zagyHisoes

1 /. &t _

With these solutions, and the relatigh< Ce(t), whereC = 2(1+ leL\]ZFC\L; ,
we obtain
Lemma2. Ifs, j <4we have:
Cc Cc
i . i -
Al k(t)’ < g for s> 0; |AL )] < 2 for j>0
k k
g(t) . - g(t) ,
|AJ k(t)| < =5 for s>0; 1A (t)| < 5 for j> 0,
k K

whereC is a constant that is independentﬁ)fand dt) € C§°(0, o0) is a function
that is independent d&. Now, we show that the function

) =) h™ AL De2°(),

is a semiclassical solution. In fact, using (Harthong, 1984; Maslov and Fedoriuk,
1981),

t.0,0 — 12 — 1t - -
\/ [ T2 - P Qs aQe < 1 [ /iha, — Ao d Qe

and Lemma 2, we obtain

h4G(t)

\//RZ |Trt1¢§'0(0) ¢k(t)| koko

k

whereG(t) € £°(0, oo) N C*>(0, 00) is independent ok andh.
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Therefore,q;R(t) is a semiclassical solution (Hagedorn, 1980; Haro, 1998;
Maslov and Fedoriuk, 1981), and we see fiap>°(0) has the form

_ 4
Thoe °(0) = ¢(t) + h* D Ry (0°(t) + By (1),
s=0

with [F ()] < K/e- \/_/Rz | B;(t)|2d deQk < K/e- whereK is a constant that

|smdependentdtandh and,Bk(t)J_qb (t) (t)
Now, we take

4 .
A) = Y A () + h*Fo(t)
=9

Ye(t) = Thoe (0) — Ax(t)ee ().

Finally, since
te(r) /.- . €x(T)
AZ (1) = — k (uAO-—| k A1~>d
ok(®) o 42\ "1k 2e(r) Ok t
) 22
ST
326£(t) 2\ Jo 865(7:) '
and Ag R(t) is imaginary, we have
'?
A t)>=1-h? h*Jt). o
| k( )l 664(t) + k( )
Proof of Theorem 3.1: Starting from the relation Ay(t)|? = h21;§§‘(’t) +

h%J.(t), we have

24
Pot) = [T 1A®P =] (1— pe ) +h4JR(t)>,

4
kez? kez3 166R (t)

”
= exp(z Iog(l —h? 1:;% ()t)> + O(h))

kez®
3 , €(t)
= exp(— sz: h T60) +0(h) |,

whereO(h) verifies limn_,oO(h) = 0, for fixeda.
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If we use the Riemann’s integral definition

5 &M _ LZact (E(t) - p)? 45+ O(h)
£ 16ek(t)  167° Jie (CIPP + mPchy? !
then we obtain
L3ach (E®)-p? .
=) — _ h) ).
) eXp( e | @ipe § o P+ O )>
Now it is easy to prove that
. a &(t) a &(t)

pn(t) = eXp<_§1m—c2 + O(h)) eXp(_am—cZ)
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